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Abstract: 

This study focuses on the classification of a dry beans dataset using three machine learning 

algorithms: logistic regression, support vector machine (SVM), and neural network (NN). The 

goal of the project is to evaluate the performance of these algorithms on a challenging 

classification task in the agricultural industry. 

To achieve this goal, the researchers first preprocessed the data and split it into training and testing 

sets. They then trained each algorithm on the training set and evaluated their performance using 

various performance metrics such as accuracy, precision, and recall. The results showed that SVM 

outperformed both logistic regression and NN with an accuracy of 0.976. 

This project has important implications for the field of machine learning, as it demonstrates the 

effectiveness of different algorithms for classification tasks in complex and diverse datasets. 

Additionally, it highlights the importance of preprocessing data and selecting appropriate 

performance metrics to accurately evaluate the performance of machine learning models. 

Overall, this project provides valuable insights into the use of machine learning algorithms for 

classification tasks in real-world applications and can serve as a foundation for future research in 

this field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction: 

Dry beans are one of the most widely produced and consumed legume crops in the world, with a 

significant impact on global agriculture and food security. However, the quality of dry beans can 

vary greatly depending on various factors, such as genetic diversity, growing conditions, and 

harvesting methods. This has led to a growing interest in developing effective methods for seed 

classification and quality control, which are essential for ensuring sustainable agricultural 

systems and providing consumers with high-quality products. 

 
In this project, we aim to explore the use of various machine learning algorithms and techniques 

to classify the 7 types of Dry Beans and evaluate their performance. 

Problem Definition: 

The Dry Beans dataset contains features for seven different types of dry beans, and the goal is to 

develop an effective classification model that can accurately identify and classify each type 

based on their physical characteristics and properties. The challenge is to find a machine learning



algorithm or technique that can handle the complex and high-dimensional nature of the dataset, 

while also achieving high accuracy and robustness in the classification task. 

Data Resources: 

The data for the analysis is taken from UC Irvine’s Machine Learning Repository. 

https://archive-beta.ics.uci.edu/dataset/602/dry+bean+dataset 
 

Data Description: 
 

The dataset contains 16 features, 13,611 instances, and 7 outcome classes of different types of 

dry beans. Each record in the Dry Beans dataset represents a single bean zone in an image. 

Independent Features: 

The features of this dataset are 

1) Area (A): The area of a bean zone and the number of pixels within its boundaries. 

2) Perimeter (P): Bean circumference is defined as the length of its border. 

3) Major axis length (L): The distance between the ends of the longest line that can be drawn 

from a bean. 

4) Minor axis length (l): The longest line that can be drawn from the bean while standing 

perpendicular to the main axis. 

5) Aspect ratio (K): Defines the relationship between L and l. 

6) Eccentricity (Ec): Eccentricity of the ellipse having the same moments as the region. 

7) Convex area (C): Number of pixels in the smallest convex polygon that can contain the area of 

a bean seed. 

8) Equivalent diameter (Ed): The diameter of a circle having the same area as a bean seed area. 

9) Extent (Ex): The ratio of the pixels in the bounding box to the bean area. 

10) Solidity (S): Also known as convexity. The ratio of the pixels in the convex shell to those 

found in beans. 

11) Roundness (R): Calculated with the following formula: (4piA)/(P^2) 

12) Compactness (CO): Measures the roundness of an object: Ed/L 

13) ShapeFactor1 (SF1) 

14) ShapeFactor2 (SF2) 

15) ShapeFactor3 (SF3) 

16) ShapeFactor4 (SF4) 

https://archive-beta.ics.uci.edu/dataset/602/dry%2Bbean%2Bdataset


Dependent Feature: 

The dependent variable or target variable in this dataset is the "Class" column, which indicates 

the type of the dry bean. There are 7 types of dry beans represented in this dataset, which are: 

BARBUNYA, BOMBAY, CALI, DERMASON, HOROZ, SEKER and SIRA. 

 

Data Understanding & Pre-processing: 

From analyzing the data, we can see that out of the 16 variables in the dataset, variable - Class is 

the dependent target variable we are trying to predict, and it is a categorical variable. 
A view of features and target variable, type, unique values and missing values and duplicates: 

 

This view gives us information about non-Null values and the Datatype of values in each feature. 

We have three datatypes for values in this dataset: - int, float and object. 



 
 

The size of the data is 13611X17 

 

We have 13,611 rows and 16 columns in the data set, on which we will perform different data 

explorations and visualizations to see the correlations and see how we can impute or fill the null 

values. 
 

Data Exploration & Visualization: 

1)Finding Null values in the dataset 

This dataset has doesn’t have any null values 

 

Numerical Features: 



- This table gives info about the count, standard deviation, minimum, maximum and the 4- 

percentile cut off values for the 16 numerical features 
 

 

The graph below gives us information about the counts of each class. Dermason is the most 

frequent class with ‘2496’ beans and Bombay is the least frequent class with ‘365’ beans. This 

huge difference between the 2 classes, should be considered while building a model, otherwise 

there might be a risk of the model being biased. 

 

 
 

This view gives us a description of all the variables included is available, along with their 

respective mean and median values, which can be used to assess the degree of skewness in the 



data. This information can aid in determining the distribution of the data and identifying 

potential outliers. 

 

 

We find that there are 68 duplicate values in this dataset. 

 

 

After the Data exploration, we perform these two tasks: - 

1) Dropping the duplicated rows 

2) Setting aside 20% of the data for testing which we will not use in model building 



 
 
 

Univariate Analysis: - 
Univariate analysis is important in machine learning because it provides a detailed understanding 

of individual variables in a dataset, allowing for the identification of trends, patterns, and 

anomalies. This information is crucial for selecting appropriate modeling techniques and 

developing accurate predictive models. 
 



 
 
 

These boxplots provide important insights into the distribution of each feature, allowing us to 

identify any potential outliers, skewness or significant differences in the distributions between 

the two groups, which can help guide data cleaning, feature selection and machine learning 

modeling decisions. 



 



Insights from Univariate Analysis: - 

• Most of the features are left or right skewed and have a lot of outliers (long tail in eccentricity, 

solidity, roundness, shape factor2, shape factor4) 

• W.r.t area related features (Area, perimeter, convex area, equidistance, major axis), we can 

differentiate the 'Bombay' class 

• Both Barbunya class and Cali class have similar distributions and values in many features 

(area, minor axis length, equivalent diameter, extent, shape factor1), which may lead to 

mislabeling one as the other. 

• Dermason class is similar to Seker class in some features, and Sira class in other features. It 

may be a difficult class to label accurately! 
 

Multivariate Analysis 
Multivariate analysis is important in machine learning because it allows us to analyze and model 

the relationships between multiple variables simultaneously. By using multivariate analysis, we 

identify the important variables and understand how they are related to each other. This 

understanding helps us to develop more accurate and effective machine learning models. 

 

 

Heat Map(Correlation Analysis) 

 



Anova/F Test to see the dependence of features with the target variable 
 

F-test estimates the degree of linear dependency between feature and target variable. 
 



Pairplots:- 

 



Mutual Information Scores 
Mutual information between two random variables is a non-negative value, which measures the 

dependency between the variables. 
 

It is equal to zero if and only if two random variables are independent, and higher values mean 

higher dependency. 
 

 

 

Dropping columns with high correlation 
After performing, multivariate Analysis, we drop the features with high correlation.In this case 

 

 

Insights from Multivariate Analysis: 
After plotting the correlation plots, we find the following pairs have the highest correlation with 

each other: 

 
1. Area & convex area: 1.00 

2. Compactness & shape factor 3: 1.00 

3. Equivalent diameter & perimeter: 0.99 

4. Equivalent diameter & convex area: 0.99 

5. Major axis length & perimeter: 0.98 

6. Area & perimeter: 0.97 



7. Convex area & perimeter: 0.97 

8. Major axis length & equivalent diameter: 0.96 

9. Minor axis length & equivalent diameter: 0.95 

10. Minor axis length & convex area: 0.95 

11. Minor axis length & shape factor 1: -0.95 

12. Eccentricity & compactness: -0.97 

13. eccentricity & shape factor 3: -0.98 

14. aspect ratio & shape factor 3: -0.98 

15. aspect ratio & compactness: -0.99 

• From Mutual Information & F-test, we can see that following variables have least dependency 

with respect to the response variable: 

 

1. ShapeFactor4 

2. Solidity 

3. Extent 

 

Hence, we can conclude that, the above highly correlated features are not useful for our analysis 

and can be dropped. Similarly, features that offer very low information to the dependent variable 

can also be dropped. 
So, we are dropping 

 

1. Perimeter 

2. Major Axis Length 

3. Minor Axis Length 

4. Convex Area 

5. Equivalent Diameter 

6. ShapeFactor3 

7. Compactness 

8. Extent 

9. Solidity 

10. ShapeFactor4 

 
 

FEATURE ENGINEERING: - 

We created 6 new features from the existing features, in order to reduce variance. 

They are 
1. ShapeFactor5 

2. ShapeFactor6 

3. ShapeFactor7 

4. ShapeFactor8 

5. ShapeFactor9 

6. ShapeFactor10 



We calculate them using the existing features:- 

X_new[‘ShapeFactor5’] = X[‘MajorAxisLength’] / X[‘Perimeter’] 

X_new[‘ShapeFactor6’] = X[‘MinorAxisLength’] / X[‘Perimeter’] 

X_new[‘ShapeFactor7’] = X[‘Eccentricity’] * X[‘Area’] 

X_new[‘ShapeFactor8’] = X[‘Eccentricity’] * X[‘Perimeter’] 

X_new[‘ShapeFactor9’] = X[‘Extent’] * X[‘Area’] 

X_new[‘ShapeFactor10’] = X[‘Extent’] * X[‘Perimeter’] 

 
 

Checking Correlation for new features: - 

 

 
 

After adding new features, we found out there is a huge correlation between the new features, 

hence we decided to go eliminate the new ones and proceed with the existing features. 
 

For the outliers to not affect the model performance, we eliminated the outliers found. 



Dimensionality Reduction: - 
Principal Component Analysis 
Principal Component Analysis (PCA) is a method that identifies the components with the highest 

variance in a dataset. It achieves this by projecting values onto the eigenvectors of the 

corresponding covariance matrices. 

The process of finding these eigenvectors involves decomposing the matrix into its eigenvalues 

and eigenvectors. If the data set is not a square matrix, it can be decomposed using singular value 

decomposition. 

To calculate the maximum variance captured by the first n components in singular value 

decomposition, we use a formula that involves the sum of the first n eigenvalues and the sum of 

all eigenvalues. To perform PCA, we first center the values around their mean. Then, we find the 

covariance matrix, eigenvalues, and eigenvectors of the matrix. After sorting the eigenvectors, 

we choose the top n eigenvectors and project the data onto them. 
 

The first n components from the singular values decomposition, when calculated 

the maximum variance captured from the formula: 

 

n = first n eigenvalues 
 

M = sum of all eigenvalues 
 

These are the steps to perform PCA: - 

1. Center the values in the dataset around their mean. 

2. Calculate the covariance matrix of the centered dataset. 

3. Find the eigenvalues and eigenvectors of the covariance matrix. 

4. Sort the eigenvectors in descending order of their corresponding eigenvalues. 

5. Choose the top n eigenvectors based on the desired number of principal components to 

retain. 

6. Project the original data onto the selected eigenvectors to transform it into a new k- 

dimensional feature space. 

 
 

The plot illustrates the relationship between the percentage of variance captured and the number 

of components in a dataset. It shows that the first 2-3 components contain a large proportion of 

the variance, meaning that they are the most significant features of the dataset. The data 

presented in the plot was selected using univariate feature selection methods, which involve 

analyzing each feature independently and selecting the ones with the highest predictive power. 



 
 

Based on this finding, it was decided to move forward with univariate feature selection methods. 

A plot of the first principal component (PC1) versus the second principal component (PC2) is 

shown in the charts below. 
 
 

MODEL SELECTION: - 

Model Candidates: 
The response (dependent) variable we are trying to predict through the dataset is a categorical 

variable, hence we will be using classification techniques to predict the class. We have taken the 

following machine learning classification models to perform on our dataset: 



1. Multi Nominal Logistic Regression: This is a simple and widely used classification 

algorithm that is effective for classification problems involving more than two classes 

 

2. Support Vector Machines (SVM): This algorithm uses a hyperplane to separate data into 

different classes and tries to maximize the margin between the hyperplane and the closest 

data points. 
 

3. Neural Networks: This is a deep learning algorithm that uses layers of interconnected 

nodes to learn complex representations of data and make predictions 
 

We will be using the above-mentioned models to perform the classification on the train data and 

using the matrices such as precision and recall on the train and validation data, we will be 

selectin the best candidate to predict the outcome for our test data. 

 
 

MultiNominal Logistic Regression: 
Multinomial logistic regression is a logistic regression extension that enables multi-class 

classification using SoftMax activation. It is used to predict probabilities of belonging to 

different classes when there are more than two classes involved. 
 

Steps Involved: 
 

1) In cases where the dependent variable in logistic regression involves more than two classes, a 

commonly used technique is to apply the SoftMax function. This approach was also utilized in 

our particular scenario where we had to predict among seven different classes. 
 

2) The categorical cross-entropy loss function is a way to measure the difference between the 

predicted probabilities and the true probabilities of the classes in a classification problem. It is 

commonly used in deep learning for multi-class classification tasks. 
 

In order to calculate the categorical cross-entropy loss for a single example, the function 

computes the sum of the negative logarithm of the predicted probability of the true class. This 

can be expressed as: 
 



 
 

 
 

3)In multi-class classification, the labels are typically one-hot encoded, which means that each 

class is represented by a binary vector where only one element is 1 (positive class) and the rest 

are 0s (negative classes). 
 

When using the categorical cross-entropy loss function for multi-class classification with one-hot 

encoded labels, only the term corresponding to the positive class Cp contributes to the loss. This 

is because all other terms in the sum of the loss function are multiplied by 0 (since the 

corresponding elements in the one-hot encoded target vector are 0s). 
 

Mathematically, we can express this as follows: 
 
 

 

4) The plot displays the relationship between the learning rate and the average loss across the 

iterations. It shows that as the learning rate increases, the average loss decreases. The learning 

rate is a hyperparameter that determines the step size in updating the model parameters during 

the training process. A higher learning rate means that the model parameters will be updated 

more aggressively, leading to larger changes in the loss function. 

 



5) The plot shows the relationship between the regularization parameter value (L2 penalization) 

and the cost. The L2 penalization is a regularization technique used to prevent overfitting by 

adding a penalty term to the loss function that discourages the model from relying too heavily on 

any one feature. The penalty term is proportional to the square of the weights of the model, 

which means that as the regularization parameter value increases, the weight vector is forced to 

become smaller, resulting in a simpler and more generalizable model. 

 

The plot indicates that as the value of the regularization parameter increases, the cost also 

increases. This is because the greater the penalty term, the more the model is discouraged from 

relying on any one feature, which makes the model more biased and less likely to overfit the 

training data. 

 

On the other hand, if the regularization parameter value is very low, the cost is also very low, 

which indicates that the model is overfitting the data. In this case, the model is relying too 

heavily on the training data and is not generalizing well to new, unseen data. 
 

 

 

 
SUPPORT VECTOR MACHINES 
A support vector machine (SVM) is a popular supervised learning algorithm used for 

classification and regression analysis. SVMs are used to sort data into one of two categories by 

constructing a decision boundary that maximizes the margins between the two categories. In the 

case of Soft Margin SVM, the SVM algorithm allows for some data points to be misclassified in 

order to achieve a wider margin. 

 

In the case of multi-class classification, the one-vs-all (OVA) approach is often used with SVMs. 

The OVA approach involves training multiple binary SVM classifiers, each one trained to 

distinguish one class from all the others. During prediction, the class with the highest score from 

any of the binary classifiers is selected as the predicted class. 



Overall, SVMs are powerful and versatile machine learning algorithms that can be used for a 

variety of tasks, such as image classification, natural language processing, and fraud detection. 

The choice of SVM variant and approach depends on the specific problem and dataset at hand, as 

well as the desired balance between accuracy and complexity. 

 
Steps Involved: - 

1) The soft margin support vector machine (SVM) allows some data points to be misclassified 

using a hyperparameter C. If the value of C is large, the SVM becomes a hard margin classifier, 

which aims to correctly classify all data points. On the other hand, if C is small, the SVM 

becomes a soft margin classifier, allowing for some misclassification. 

 

To keep alpha values in a specific range, we can use complementary slackness, which is the 

fourth rule of the Karush-Kuhn-Tucker (KKT) conditions for SVM optimization. 

By satisfying these conditions, we can ensure that alpha values stay within a specific range, and 

the SVM can be used effectively for classification tasks. 

 

 
 

 

2) To handle nonlinearity in the data, we utilized the Gaussian radial basis function as a kernel. 

This function measures the Gaussian distance between data points in a nonlinear space, which 

can be interpreted as a measure of similarity between data points. 
 

 

3) To handle the scenario of multiple classes, we implemented the One-vs-All approach, where 

each class is taken as the positive class, labeled as '1', and all other classes are labeled as '-1'. 
 

4) Due to longer execution time of support vector machines, we have implemented One-vs-All 

approach by sampling the data for each class one at a time. The results of this approach are as 

follows: 



 
 

 
 

NEURAL NETWORKS: - 

We explored different strategies for optimizing Neural Networks and prioritizing speed. To 

achieve this, we have decided to use mini batches of size 64 to simplify matrix multiplication. 

We have provided the training and testing times in table nn1.1. Additionally, we are using 

different optimization algorithms such as Adam and RMSprop to converge faster through 

gradient descent. RMSprop uses a combination of gradient descent with momentum and 

exponentially weighted averages to adjust the learning rate. 

 

Momentum is a technique used in gradient descent optimization to speed up convergence. It 

helps the gradient descent algorithm to move faster in the relevant direction and slow down in 

irrelevant directions. The momentum term is calculated by taking a weighted average of the 

previous gradients. 

 
2) In essence, this approach helps to make the update steps more consistent by using RMSprop to 

implement the same smoothing process. 
 

 

 
3) According to the original research recommendation, we set the value of β to 0.99 and α as the 

learning rate as usual. To make the update slower in the vertical direction, we divide the update 

of b by a relatively larger number compared to W because the slope is larger in the b direction. 



Sometimes, we also add a small value of ε in the denominator under the square root to ensure 

numerical stability in case the denominator is 0. 

 

 

4. Adam Optimization (Adaptive moment estimation): Adam performs both momentum and 

RMSprop and combines them as follows. 

 

 
In a standard method such like Adam, a bias correction is applied prior to performing a gradient 

update. 

 

 

 

 
This algorithm, which combines gradient descent with momentum and gradient descent with 

RMSprop, is a commonly used approach for faster convergence in many types of neural 

networks. There are several hyperparameters in this algorithm. The most commonly used 

parameter values include: 

 

● α = needs to be tuned 

● β (Moving averages for dw, computes past 10 values averaged) 1 = 0. 9 

●β (Moving averages of dw2) 2 = 0. 999 



● ε = 10 (Usually not required to use) 

To accelerate the learning process of algorithms, one effective approach is to implement learning 

rate decay. This involves gradually decreasing the learning rate over time as the number of mini- 

batches and iterations increase. The reasoning behind this method is that at the start of the 

learning process, taking larger steps can be beneficial, but as more iterations are completed, it 

becomes more advantageous to slow down the learning process to approach the optimal solution 

more accurately. 

 

Here, we have implemented neural networks from scratch using NumPy and optimized various 

parameters to achieve the maximum accuracy on the test results. In addition to the above- 

mentioned hyperparameters and methods, we also utilized techniques to avoid getting stuck at 

the saddle point, which is one of the local optima during the learning process. To prevent this, we 

used Adam optimizer, which helps to slip off the saddle point during learning. We also fine- 

tuned the decay rate hyperparameter to optimize the learning rate decay, which gradually reduces 

the learning rate as the number of mini-batches and iterations increases. Overall, our approach 

helped to speed up the learning process and avoid getting stuck at local optima. 
 

RESULTS 

1) Logistic Regression Results 

• train error: 4.257356647636495 

• accuracy: 0.7994613124387855 

• test error: 3.8359508144175183 
 

2) SVM Results 

• 96 corrected out of 100: 

• Accuracy of SVM on 100 samples = 96% 

 

3) Neural Network Model Comparison 

Accuracy on test data for different methods and Train Time 

 Accuracy using PCA and 

Univariate FS 

Train Time 

Adam_using_weight_decay 86.75% 0:00:06.429996 

RMSprop_using_L2 86.83% 0:00:07.193343 

Base_model_without_optim_and_minibatches 58.5% 0:09:26.794456 

   

 

The notation "Adam_using_weight_decay" represents the use of mini-batch gradient descent 

with Adam optimization. On the other hand, "RMSprop_using_L2" uses RMSprop as the 

optimizer and L2 regularization. However, all the Adam methods mentioned in the context use 

the Weight Decay technique, not L2 regularization. The key difference between L2 

regularization and weight decay is that L2 regularization changes the gradients to include lambda 



times the weight parameters, whereas weight decay doesn't modify the gradients. Instead, it 

subtracts the product of learning rate, lambda, and the weight parameters from the weights in the 

update step. 
 

Conclusion: 
 

- From the results above, we can conclude that SVM and Neural Networks give us the best 

results in this classifying task of dry beans into seven different classes. 

- For Neural Networks(using RMSprop & Adam), the time taken is least 

whilst also providing great results.  

- When it comes to SVM, it provided us with the best accuracy i.e., of 96% 
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