Dry Beans Classification

IE 7300 Statistical Learning Final Project

Group 3

Harsha Bhargav Yarramsetty - yarramsetty.h@northeastern.edu
Abhigna Reddy Musku - musku.ab@northeastern.edu
Shamhith Kamasani - kamasani.s@northeastern.edu

Percentage of contribution by Harsha Bhargav Yarramsetty: 33.33%
Percentage of contribution by Abhigna Reddy Musku: 33.33%
Percentage of contribution by Shamhith Kamasani: 33.33%

Signature of Harsha Bhargav: Harsha Bhargav Yarramsetty
Signature of Abhigna Reddy Musku: Abhigna Reddy Musku
Signature of Shamhith Kamasani: Shamhith Kamasani

Submission Date: 04/17/2023

mailto:yarramsetty.h@northeastern.edu
mailto:musku.ab@northeastern.edu
mailto:kamasani.s@northeastern.edu

Abstract:

This study focuses on the classification of a dry beans dataset using three machine learning
algorithms: logistic regression, support vector machine (SVM), and neural network (NN). The
goal of the project is to evaluate the performance of these algorithms on a challenging
classification task in the agricultural industry.

To achieve this goal, the researchers first preprocessed the data and split it into training and testing
sets. They then trained each algorithm on the training set and evaluated their performance using
various performance metrics such as accuracy, precision, and recall. The results showed that SVM
outperformed both logistic regression and NN with an accuracy of 0.976.

This project has important implications for the field of machine learning, as it demonstrates the
effectiveness of different algorithms for classification tasks in complex and diverse datasets.
Additionally, it highlights the importance of preprocessing data and selecting appropriate
performance metrics to accurately evaluate the performance of machine learning models.

Overall, this project provides valuable insights into the use of machine learning algorithms for
classification tasks in real-world applications and can serve as a foundation for future research in
this field.

Introduction:
Dry beans are one of the most widely produced and consumed legume crops in the world, with a
significant impact on global agriculture and food security. However, the quality of dry beans can
vary greatly depending on various factors, such as genetic diversity, growing conditions, and
harvesting methods. This has led to a growing interest in developing effective methods for seed
classification and quality control, which are essential for ensuring sustainable agricultural

systems and providing consumers with high-quality products.

In this project, we aim to explore the use of various machine learning algorithms and techniques
to classify the 7 types of Dry Beans and evaluate their performance.

Problem Definition:

The Dry Beans dataset contains features for seven different types of dry beans, and the goal is to
develop an effective classification model that can accurately identify and classify each type

based on their physical characteristics and properties. The challenge is to find a machine learning

algorithm or technique that can handle the complex and high-dimensional nature of the dataset,
while also achieving high accuracy and robustness in the classification task.

Data Resources:

The data for the analysis is taken from UC Irvine’s Machine Learning Repository.
https://archive-beta.ics.uci.edu/dataset/602/dry+bean+dataset

Data Description:

The dataset contains 16 features, 13,611 instances, and 7 outcome classes of different types of
dry beans. Each record in the Dry Beans dataset represents a single bean zone in an image.

In ndent F r

The features of this dataset are

1) Area (A): The area of a bean zone and the number of pixels within its boundaries.

2) Perimeter (P): Bean circumference is defined as the length of its border.

3) Major axis length (L): The distance between the ends of the longest line that can be drawn
from a bean.

4) Minor axis length (I): The longest line that can be drawn from the bean while standing
perpendicular to the main axis.

5) Aspect ratio (K): Defines the relationship between L and I.

6) Eccentricity (Ec): Eccentricity of the ellipse having the same moments as the region.

7) Convex area (C): Number of pixels in the smallest convex polygon that can contain the area of
a bean seed.

8) Equivalent diameter (Ed): The diameter of a circle having the same area as a bean seed area.
9) Extent (Ex): The ratio of the pixels in the bounding box to the bean area.

10) Solidity (S): Also known as convexity. The ratio of the pixels in the convex shell to those
found in beans.

11) Roundness (R): Calculated with the following formula: (4piA)/(P"2)

12) Compactness (CO): Measures the roundness of an object: Ed/L

13) ShapeFactorl (SF1)

14) ShapeFactor2 (SF2)

15) ShapeFactor3 (SF3)

16) ShapeFactor4 (SF4)

https://archive-beta.ics.uci.edu/dataset/602/dry%2Bbean%2Bdataset

Dependent Feature:

The dependent variable or target variable in this dataset is the "Class" column, which indicates
the type of the dry bean. There are 7 types of dry beans represented in this dataset, which are:
BARBUNYA, BOMBAY, CALI, DERMASON, HOROZ, SEKER and SIRA.

D nderstandin Pre-pr inQ:

From analyzing the data, we can see that out of the 16 variables in the dataset, variable - Class is
the dependent target variable we are trying to predict, and it is a categorical variable.
A view of features and target variable, type, unique values and missing values and duplicates:

Dtype Unique Duplicated Mean Median Skewness

Area int64 12011 68 53048.285 44652000 2952031
Perimeter float64 13416 855.283 794.941 1.626124
MajorAxisLength float64 13543 320.142 296.883 1.357815
MinorAxisLength float64 13543 6 202.271 192432 2238211
AspectRation float64 13543 1.583 1,661 0.582573
Eccentricity float64 13543 B4 0.751 0.764 -1.062824
ConvexArea int64 12066 68 653768.200 45178.000 2941821
EquivDiameter float64 12011 253.064 238.438 1948058
Extent floaté4 135635 0.760 0.760 -0.895348
Solidity float64 13526 B! 0.987 0.988 -2.650093
roundness floaté4 13543 Bi 0.873 0.883 -0.635749

Compactness floaté4 13543 6! 0.800 0.801 0.0371156

ShapeFactor1 floaté4 13543 0.007 0.007 -0.534141

ShapeFactor2 floaté4 13543 0.002 0.002 0.301226
ShapeFactor3 floatt4 13543 0.644 0.642 0.242481

ShapeFactord float64 13543 0.995 0.996 -2.759483

This view gives us information about non-Null values and the Datatype of values in each feature.
We have three datatypes for values in this dataset: - int, float and object.

[> Shape of the data (13611, 17)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13611 entries, 0 to 13610
Data columns (total 17 columns):

Column Non-Null Count Dtype

non-null

Perimeter 13611 non-null float64
MajorAxisLength 13611 non-null float64
MinorAxisLength 13611 non-null float64
AspectRation 13611 non-null float64
Eccentricity 13611 non-null float64
ConvexArea 13611 non-null int64
EquivDiameter 13611 non-null float64
Extent 13611 non-null float64
Solidity 13611 non-null float64
roundness 13611 non-null float64
Compactness 13611 non-null float64
ShapeFactorl 13611 non-null float64
ShapeFactor? 13611 non-null float64
ShapeFactor3 13611 non-null float64
ShapeFactor4 13611 non-null float64
(WELE 13611 non-null object

dtypes: float64(14), int64(2), object(1)

memory usage: 1.8+ MB

None

The size of the data is 13611X17

We have 13,611 rows and 16 columns in the data set, on which we will perform different data
explorations and visualizations to see the correlations and see how we can impute or fill the null
values.

Data Exploration & Visualization:
1)Finding Null values in the dataset
This dataset has doesn’t have any null values

Area

Perimeter
MajorAxisLength
MinorAxisLength
AspectRation
Eccentricity
ConvexArea
EquivDiameter
Extent

Solidity
roundness
Compactness
ShapeFactorl
ShapeFactor2
ShapeFactor3
ShapeFactor4
Class

dtype: int64

OO OO0 0O 00O 00000 O OO OO

Numerical Features:

- This table gives info about the count, standard deviation, minimum, maximum and the 4-
percentile cut off values for the 16 numerical features

count mean std min 25% 50% 75% max

Area 13611.0 53048.2845 29324.0957 20420.0000 36328.0000 44652.0000 61332.0000 254616.0000
Perimeter 13611.0 855.2835 214.2897 524.7360 703.5235 794.9410 977.2130 1985.3700
MajorAxisLength 13611.0 320.1419 85.6942 183.6012 253.3036 296.8834 376.4950 738.8602
MinorAxisLength 13611.0 202.2707 44.9701 122.5127 175.8482 192.4317 217.0317 460.1985
AspectRation 13611.0 1.5832 0.2467 1.0249 1.4323 1.5511 1.7071 2.4303
Eccentricity 13611.0 0.7509 0.0920 0.2190 0.7159 0.7644 0.8105 0.9114
ConvexArea 13611.0 53768.2002 29774.9158 20684.0000 36714.5000 45178.0000 62294.0000 263261.0000
EquivDiameter 13611.0 253.0642 59.1771 161.2438 215.0680 238.4380 279.4465 569.3744
Extent 13611.0 0.7497 0.0491 0.5553 0.7186 0.7599 0.7869 0.8662
Solidity 13611.0 0.9871 0.0047 0.9192 0.9857 0.9883 0.9900 0.9947
roundness 13611.0 0.8733 0.0595 0.4896 0.8321 0.8832 0.9169 0.9907
Compactness 13611.0 0.7999 0.0617 0.6406 0.7625 0.8013 0.8343 0.9873
ShapeFactor1 13611.0 0.0066 0.0011 0.0028 0.0059 0.0066 0.0073 0.0105
ShapeFactor2 13611.0 0.0017 0.0006 0.0006 0.0012 0.0017 0.0022 0.0037

ShapeFactor3 13611.0 0.6436 0.0990 0.4103 0.5814 0.6420 0.6960 0.9748

ShapeFactor4 13611.0 0.9951 0.0044 0.9477 0.9937 0.9964 0.9979 0.9997

The graph below gives us information about the counts of each class. Dermason is the most
frequent class with ‘2496’ beans and Bombay is the least frequent class with ‘365’ beans. This
huge difference between the 2 classes, should be considered while building a model, otherwise
there might be a risk of the model being biased.

Bean type counts in the training data

2500 A

2000 A
1500 -
1000 -
500 4

o -

5
&

Count

ROZ

3

SEKER

e

DERMASON
BARBUNYA
BOMBAY

Bean type

This view gives us a description of all the variables included is available, along with their
respective mean and median values, which can be used to assess the degree of skewness in the

data. This information can aid in determining the distribution of the data and identifying

Area
Perimeter
MajorAxisLength
MinorAxisLength
AspectRation
Eccentricity
ConvexArea
EquivDiameter
Extent
Solidity
roundness
Compactness
ShapeFactor1

ShapeFactor2

ShapeFactor3

ShapeFactor4

potential outliers.

Dtype

int64
float64
float64
float64
float64
float64

int64
float64
float64
float64
float64
float64
float64
float64
float64

float64

Area Perimeter

33518

7263

7278 63882

7285 63948

7340 65766

7342 65781

702.956

7 50

791.343

790.802

996.497

1035.842

1039.257

68 rows x 17 columns

Unique Duplicated

12011

13416

13543

13543

13543

13543

12066

12011

412.297178

406.416622

409.713859

68

68

68

Mean Median

53048.285 44652.000

855.283 794.941

320.142 296.883

202.271 192.432

1.583

0.751

1.551

0.764

53768.200 45178.000

253.064 238438

0.750
0.987
0.873
0.800
0.007
0.002
0.644

0.995

154.305581
156.356326
160.591784
156.869619

163.287717

196.337705
198.765453
198.877557
207.242369

204.992832

0.760

AspectRation

Skewness

2.952931

1.626124

1.357815

2.238211

0.582573

-1.062824

2.941821

1.948958

-0.895348

-2.550093

-0.635749

0.037115

-0.534141

0.301226

0.242481

-2.759483

1.798842
1.773951
1.9087
2.03

1.981016

2.101235
2.069089
2.073121
1.961069

1.998674

Eccentricity

0.831240
08

0.851782
0.871168

0.863241

0.865834

ConvexArea

34023

64200

64663

64641

66698

66762

After the Data exploration, we perform these two tasks: -
1) Dropping the duplicated rows

EquivDiameter
206.582775
207.922042
221.193978

25412

227.932592

284.136539
285.196579
285.343867
289.371512

289.404510

Extent

0.808383

0.799482

0.796976

0.650025

0.798791

(s

0.777909

0.792295

0.642549

Solidity
0.985157

0.986461

0.980017

0.987664

0.985306

roundness

0.819931

0.787385

0.809254
0.77

0

0.765358

2) Setting aside 20% of the data for testing which we will not use in model building

Compactness Shape
0.744251
0.749624
0.721597
0.696480

0.704636

0.688730
0.693465
0.692083
0.712007

0.706358

Area Perimeter MajorAxisLength MinorAxisLength AspectRation Eccentricity ConvexArea EquivDiameter Extent Solidity roundness Compactness ShapeFactorl

36292 707.300 263.729391 175.674695 1.501237 0.745847 36678 214961414 0.759120 0.989476 0.911619 0.815083 0.007267
69845 030 416.157251 218.251925 1.906775 0.851444 72211 298.210356 0.783604 0.967235 0.796053 0.716581 0.005958
33682 691.390 263.216456 163.669292 1.608221 0.783172 34106 207.087552 0.712756 0.987568 0.885445 0.786758 0.007815
20942 530.683 191.176525 139.586402 1.369593 0.683293 21191 163.291710 0.742361 0.988250 0.934453 0.854141 0.009129
45047 796.038 298.762324 192.785476 1.549714 0.763946 45589 239.490338 0.738730 0.988111 0.893322 0.801608 0.006632
ShapeFactor2 ShapeFactor3 ShapeFactord Class
0.001978 0.664361 0.997363 DERMASON
0.000969 0.513488 0.979106 CALI
0.001847 0.618988 0.995469 DERMASON
0 7 7 0.999196 DERMASON

0.001689 0.642576 0.995809 SIRA

Univariate Analysis: -

Univariate analysis is important in machine learning because it provides a detailed understanding
of individual variables in a dataset, allowing for the identification of trends, patterns, and
anomalies. This information is crucial for selecting appropriate modeling techniques and
developing accurate predictive models.

€ 2500
270 Ll | o {Hll—ne comm——" |

50000 100000 150000200000250000 50000 100000 150000 200000250000

Area
% 1000 B= =
3 o . r » -
500 1000 1500 500 1000 1500
Perimeter
FRLUS T — | ol ———————|
3 0 . Y . -
200 400 600 200 400 600
MajorAxisLength
g zoog ‘ - ' | o »—.—- —-ool
200 300 400 200 300 400
MinorAxisLength
00 [l B == 1
1.0 15 2.0 25 10 15 2.0 25
AspectRation
€
S 1000 #__l oy — | —
s ; 14 w0 commmm———J— |
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Eccentricity
3 2502 i. | o a—u_m]
50000 100000150000200000250000 50000 100000150000200000250000
ConvexArea
5 1000 i L | o [—l——ie |
3 v -
200 300 400 500 200 300 400 500

EquivDiameter

£ 1000 r
¥ e T — el
0.6 0.7 0.8 0.6 0.7 0.8
Extent
€
2500
i F—— (D= =
0.92 0.94 0.96 0.98 0.92 0.94 0.96 0.98
Solidity
£ 1000
3% ofs_ vemens SN |
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
roundness
o
§1°°2 2 ‘ . 01w 11 -
T) ST T T
0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
Compactness
gmog 1 * 0 | — 11 -]
T i T T
0.004 0.006 0.008 0.010 0.004 0.006 0.008 0.010
ShapeFactorl
§1000 | 0‘{
0.001 0.002 0.003 0.001 0.002 0.003
ShapeFactor2
o
R T —)
T - T T
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
ShapeFactor3
€ 2500
i — T
095 096 097 098 099 1.00 095 096 097 098 099 100
ShapeFactor4

These boxplots provide important insights into the distribution of each feature, allowing us to
identify any potential outliers, skewness or significant differences in the distributions between
the two groups, which can help guide data cleaning, feature selection and machine learning
modeling decisions.

250000
200000 1
5 1500 1
© 150000 @
z E
I~
100000 + % & 10007 , %
T = A 2 s .
= ¥ == T wlE .
DERMASONCALI SIRA HOROBOMBAYSEKEBARBUNYA DERMASONGALI SIRA HOROZBOMBAYSEKEBARBUNYA
- = B
S 600 g w0
s c .
< 400 2
5 g 200
2 £
200 -I
DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA
25
: e
S 2.0 & N
g
z E 0.6
= #
& 154 g
g2 H i 04
101 v . v . v . 021 ’ .
DERMASONCALI SIRA HOROBOMBAYSEKEBARBUNYA DERMASONCALI SIRA HOROZBOMBAYSEKERARBUNYA
250000
. 500 1
@ 200000 g
o o
£ 150000 | § 400 1
s =]
§ 100000 1 + + 2 300 1
& o =+
50000 - =+ $
—_ =+ 200 {wapem
DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA DERMASONCALI SIRA HOROZBOMBAYSEKERARBUNYA
o
., 5 0.96 1 :
8 & .
0.94 4
06 B
v v v - v r v 0921 . v . v $ v
DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA DERMASONALI SIRA HOROZBOMBAYSEKEBARBUNYA
1.0 4 10
9 b +
g o8 £
5]
207 ‘ 2 0.8
3 £
€ o ! . 8
- 0.7 4
051 o
DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA DERMASONALI SIRA HOROZBOMBAYSEKERARBUNYA
0.010
o [0.003 1
5 0.008 3
8 g M é
g 0.006 * $ + § 0.002 | +
2 %
0.004 * 0.001 4 é
DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA
10 1,00 4
o - 0.99 i '
gos * goosq
I g !
] € 0.97 M
2061 T
& & 0964
04 0951 (3

DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA DERMASONCALI SIRA HOROZBOMBAYSEKEBARBUNYA

Insights from Univariate Analysis: -

e Most of the features are left or right skewed and have a lot of outliers (long tail in eccentricity,
solidity, roundness, shape factor2, shape factor4)

e \W.r.t area related features (Area, perimeter, convex area, equidistance, major axis), we can
differentiate the 'Bombay’ class

e Both Barbunya class and Cali class have similar distributions and values in many features
(area, minor axis length, equivalent diameter, extent, shape factorl), which may lead to
mislabeling one as the other.

e Dermason class is similar to Seker class in some features, and Sira class in other features. It
may be a difficult class to label accurately!

Multivariate Analysis

Multivariate analysis is important in machine learning because it allows us to analyze and model
the relationships between multiple variables simultaneously. By using multivariate analysis, we
identify the important variables and understand how they are related to each other. This
understanding helps us to develop more accurate and effective machine learning models.

Heat MaESCorreIation Analzsis:

1.00
Area SRR PRV ERELY 0.24 0.27 IREEEER0.053 -0.2 -0.36 -0.27 QUR:EEK11-0.27 -0.36

Perimeter JURVABUENVELRE-Y 0.39 0.39 UEPAEER0.022-0.31 -1 -0.41 R p S -0.41 -0.43

0.75
MajorAxisLength -JUEERIVET IS SRRk} 0.93 0.96 PRERFE] 0.6 057 -0.77 -0.86 05T

MinorAxisLength JUEEIIVESSIE:ENES S 0078.019UEENVERY 0.15 -0.16 -0.21-0.01GUEEN0.47 -0.02 -0.27

- 0.50
AspectRation - 0.24 0.39 ﬂ). 007 SBEERYY 0.24 0.3 -0.37 -0.27 BUNAEEE]0.02 3EOEERCETE] -0.45
Eccentricity - 0.27 0.39 0.54 0.019(UCFEESEN 0.27 0.32 -0.32 -0.3 RUNFERUER]0.01 9fUEIGRVEE-0.45
0.25
ConvexArea IEVEVROEERVELY 0.24 0.27 ISOEEN0.051-0.21 -0.37 -0.27 QU:ERGR-21-0.27 -0.36
EquivDiameter JUEERVEERVERRELY 0.3 0.32 [UCEEESEN0.027-0.24 -0.44 -0.33RUEERNAY-0.33 -0.39
- 0.00
Extent -0.0530.0220.0790.15 0.37 -0.32 0.0510.02 0.19 0.34 0.36 -0.14 0.24 0.35 0.15
Solidity - -0.2 -0.31 -0.29 -0.16-0.27 -0.3 -0.21 -0.24 0.19 JESWE 138 0.31 0.16 0.35 0.31
- -0.25

roundness 0,36 S L L EEVULE 0,21 EUVERRFE-0.37 -0.44 0.34 |1 ESERUNES 0.24 IOV 0.47

Compactness --0.27 0,41 508 540.01 (EUEERVER]-0.27 -0.33 0.36 0.31 LALAESEE 007 RSN 0.48
- -0.50

ShapeFactor] -RUESEURVEVRFEIEER0.0230.01 9RUEEERE]-0. 14 0.16 0.240.007 SN 0.470.00680.25

CIETR NP 0,64 -0.77 -0.86 £ L¥)-0.84 -0.86 0.64 -0.71 [FXWELY 0.78 0.87 [X¥A 1 0.87 [EES
-0.75

ShapeFactor3 --0.27 -0,41 54/ -0.02 EUEEREEE]-0.27 -0.33 0.35 0.31 LR 006 JoE: VAN

ShapeFactor4 --0.36 -0.43 -0.27-0.45 0.45 -0.36 -0.39 0.15

(1 047 0.48 0.25 0,53 0.48 B!

Area -
Extent
Solidity

Perimeter -
AxisLength
AxisLength -
ipectRation -
iccentricity -
‘onvexArea -
ivDiameter -
roundness -
/mpactness -
apeFactorl -
apeFactor2 -1
apeFactor3 -
apeFactord

Anova/F Test to see the dependence of features with the target variable

F-test estimates the degree of linear dependency between feature and target variable.

<BarContainer object of 16 artists>

Area
ConvexArea
EquivDiameter
Perimeter
MinorAxisLength
MajorAxisLength
ShapeFactor2
ShapeFactorl
AspectRation
Compactness
ShapeFactor3
Eccentricity
roundness
ShapeFactor4
Solidity

Extent

-

0 5000 10000 15000 20000

Pairplots:-

4%
¥ |
&
¥

Jiiﬂ

,;n//w

= {1 A 1= o P | i§
| : | | Y% B | 232 | a5
.4 i Fad ® |9 b | %% - | bl -
p L2 s | ¢ s <o {2 - { %S . 52 I . .
LN e O TR e e LW W e eIm e e B_m W T w w e
o P e o P e) e £ -

5 P . . —

Febp\ b4 d A
A
e,
k4

L

1y

Q

/
ﬁwmwvwamwa
rYrreIaryed

s

$1 8% B LE 2R B R

Mutual Information Scores

Mutual information between two random variables is a non-negative value, which measures the
dependency between the variables.

Itis equal to zero if and only if two random variables are independent, and higher values mean
higher dependency.

Mutual Information Scores

Perimeter
ConvexArea
EquivDiameter
Area
MajorAxisLength
ShapeFactor2
MinorAxisLength
ShapeFactorl
ShapeFactor3
Compactness
Eccentricity
AspectRation
roundness
ShapeFactor4
Solidity

Extent

r T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Dropping columns with high correlation

After performing, multivariate Analysis, we drop the features with high correlation.In this case

columns we are dropping since there is >= .95 correlation :
['Perimeter', 'MajorAxisLength', 'MinorAxisLength', 'ConvexArea', 'EquivDiameter', 'ShapeFactor3']

columns we are dropping since there is =< -0.95 correlation :
['Perimeter', 'MajorAxisLength', 'MinorAxisLength', 'ConvexArea', 'EquivDiameter', 'ShapeFactor3']

Insights from Multivariate Analysis:
After plotting the correlation plots, we find the following pairs have the highest correlation with
each other:

Area & convex area: 1.00

Compactness & shape factor 3: 1.00
Equivalent diameter & perimeter: 0.99
Equivalent diameter & convex area: 0.99
Major axis length & perimeter: 0.98
Area & perimeter: 0.97

oukrwnE

7. Convex area & perimeter: 0.97
8. Major axis length & equivalent diameter: 0.96
9. Minor axis length & equivalent diameter: 0.95
10. Minor axis length & convex area: 0.95
11. Minor axis length & shape factor 1: -0.95
12. Eccentricity & compactness: -0.97
13. eccentricity & shape factor 3: -0.98
14. aspect ratio & shape factor 3: -0.98
15. aspect ratio & compactness: -0.99
e From Mutual Information & F-test, we can see that following variables have least dependency
with respect to the response variable:

1. ShapeFactor4
2. Solidity
3. Extent

Hence, we can conclude that, the above highly correlated features are not useful for our analysis
and can be dropped. Similarly, features that offer very low information to the dependent variable
can also be dropped.
So, we are dropping

1. Perimeter

2. Major Axis Length
3. Minor Axis Length
4. Convex Area

5. Equivalent Diameter
6. ShapeFactor3

7. Compactness

8. Extent

9. Solidity

10. ShapeFactor4

FEATURE ENGINEERING: -

We created 6 new features from the existing features, in order to reduce variance.
They are

ShapeFactor5

ShapeFactor6

ShapeFactor7

ShapeFactor8

ShapeFactor9

ShapeFactor10

I

We calculate them using the existing features:-

X _new|‘ShapeFactor5’] = X[‘MajorAxisLength’] / X[‘Perimeter’]
X new[‘ShapeFactor6’] = X[‘MinorAxisLength’] / X[‘Perimeter’]
X _new[‘ShapeFactor7’] = X[‘Eccentricity’] * X[Area’]

X _new[‘ShapeFactor8’] = X[‘Eccentricity’] * X[‘Perimeter’]

X _new[‘ShapeFactor9’] = X[‘Extent’] * X[‘Area’]

X _new[‘ShapeFactor10’] = X[‘Extent’] * X[‘Perimeter’]

Checkin% Correlation for new features: -

1.00
Area 0.42 041 [EoUFAERR:T

AspectRation - 0.42 1 (UCERNEREN 0.011 0.75

Eccentricity - 0.41 1 LOVEN 0.031

-0.50
roundness A 0.78 -0.75 1 0.3 0.84 BEOISS 0.89

ShapeFactorl 0.011 0031 03 1 0.19 0.086 & b -0.25

ShapeFactor2 0.87 -0.88 0.84 JX:¥] 1 0.74 092 -0.88

-0.00

ShapeFactor5 - 0. E ki 1 0.83 k ?
ShapeFactor6é N 95 092 -0.83 1 -0.69 - _0.25
ShapeFactor7

-0.50
ShapeFactor8
ShapeFactor9

-0.75

ShapeFactorl0

o
[N]

Area

Zccentricity -
apeFactor7
apeFactor8
apeFactor9
peFactorl0

e
S
g
®
o
]
a
o

ipectRation -
roundness
apeFactorl
apeFactor2
apeFactor5 -

After adding new features, we found out there is a huge correlation between the new features,
hence we decided to go eliminate the new ones and proceed with the existing features.

For the outliers to not affect the model performance, we eliminated the outliers found.

Dimensionality Reduction: -

Principal Component Analysis

Principal Component Analysis (PCA) is a method that identifies the components with the highest
variance in a dataset. It achieves this by projecting values onto the eigenvectors of the
corresponding covariance matrices.

The process of finding these eigenvectors involves decomposing the matrix into its eigenvalues
and eigenvectors. If the data set is not a square matrix, it can be decomposed using singular value
decomposition.

To calculate the maximum variance captured by the first n components in singular value
decomposition, we use a formula that involves the sum of the first n eigenvalues and the sum of
all eigenvalues. To perform PCA, we first center the values around their mean. Then, we find the
covariance matrix, eigenvalues, and eigenvectors of the matrix. After sorting the eigenvectors,
we choose the top n eigenvectors and project the data onto them.

The first n components from the singular values decomposition, when calculated
the maximum variance captured from the formula:

n
¥s,
i=1

m

Y. 5

i=1

n = first n eigenvalues
M = sum of all eigenvalues

These are the steps to perform PCA: -

1. Center the values in the dataset around their mean.

2. Calculate the covariance matrix of the centered dataset.

3. Find the eigenvalues and eigenvectors of the covariance matrix.

4. Sort the eigenvectors in descending order of their corresponding eigenvalues.

5. Choose the top n eigenvectors based on the desired number of principal components to
retain.

6. Project the original data onto the selected eigenvectors to transform it into a new k-
dimensional feature space.

The plot illustrates the relationship between the percentage of variance captured and the number
of components in a dataset. It shows that the first 2-3 components contain a large proportion of
the variance, meaning that they are the most significant features of the dataset. The data
presented in the plot was selected using univariate feature selection methods, which involve
analyzing each feature independently and selecting the ones with the highest predictive power.

variance VS Components
7
6 .
=
e 51
Ic
v
v 47
W
o
c 31
"
>
& 2 -
1 4
0 = _l T T T
0 2 - 6 8 10
components

Based on this finding, it was decided to move forward with univariate featureselection methods.
A plot of the first principal component (PC1) versus the second principal component (PC2) is
shown in the charts below.

Second Principal Component

0
-2 1
e 2
+1% &
P
-6 e 6
5.0 25 00 25 50 75 10.0 125
First principal component
MODEL SELECTION: -
Model Candidat

The response (dependent) variable we are trying to predict through the dataset is a categorical
variable, hence we will be using classification techniques to predict the class. We have taken the
following machine learning classification models to perform on our dataset:

1. Multi Nominal Logistic Regression: This is a simple and widely used classification
algorithm that is effective for classification problems involving more than two classes

2. Support Vector Machines (SVM): This algorithm uses a hyperplane to separate data into
different classes and tries to maximize the margin between the hyperplane and the closest
data points.

3. Neural Networks: This is a deep learning algorithm that uses layers of interconnected
nodes to learn complex representations of data and make predictions

We will be using the above-mentioned models to perform the classification on the train data and
using the matrices such as precision and recall on the train and validation data, we will be
selectin the best candidate to predict the outcome for our test data.

MultiNominal Logistic Regression:

Multinomial logistic regression is a logistic regression extension that enables multi-class
classification using SoftMax activation. It is used to predict probabilities of belonging to
different classes when there are more than two classes involved.

Steps Involved:

1) In cases where the dependent variable in logistic regression involves more than two classes, a
commonly used technique is to apply the SoftMax function. This approach was also utilized in
our particular scenario where we had to predict among seven different classes.

def softmax(self,z):
zZ = 2 - np.max(z)
zZ = np.exp(z)

return np.divide(z , z.sum(axis=0))

2) The categorical cross-entropy loss function is a way to measure the difference between the
predicted probabilities and the true probabilities of the classes in a classification problem. It is
commonly used in deep learning for multi-class classification tasks.

In order to calculate the categorical cross-entropy loss for a single example, the function
computes the sum of the negative logarithm of the predicted probability of the true class. This
can be expressed as:

output
size

Loss = — Z y; - log 9,

i=1

f costFunction(self,X,y):
y_hat = self.softmax(X.dot(self.w)) # y hat
cost = - np.sum(np.log(y hat) * y, axis=1)

if self.reg:
cost = cost + (self.reg param * (np.sum(np.square(self.w))))
return 0.5* np.mean(cost)

3)In multi-class classification, the labels are typically one-hot encoded, which means that each
class is represented by a binary vector where only one element is 1 (positive class) and the rest
are Os (negative classes).

When using the categorical cross-entropy loss function for multi-class classification with one-hot
encoded labels, only the term corresponding to the positive class Cp contributes to the loss. This
is because all other terms in the sum of the loss function are multiplied by 0 (since the
corresponding elements in the one-hot encoded target vector are 05s).

Mathematically, we can express this as follows:

Loss = 2 y; - log ¥,

1=1

4) The plot displays the relationship between the learning rate and the average loss across the
iterations. It shows that as the learning rate increases, the average loss decreases. The learning
rate is a hyperparameter that determines the step size in updating the model parameters during
the training process. A higher learning rate means that the model parameters will be updated
more aggressively, leading to larger changes in the loss function.

learning rate vs Cost

4.42

4.41 -

4.37 1

4.36 A

0.001 0.002 0.003 0.004 0.005
learning rate

5) The plot shows the relationship between the regularization parameter value (L2 penalization)
and the cost. The L2 penalization is a regularization technique used to prevent overfitting by
adding a penalty term to the loss function that discourages the model from relying too heavily on
any one feature. The penalty term is proportional to the square of the weights of the model,
which means that as the regularization parameter value increases, the weight vector is forced to
become smaller, resulting in a simpler and more generalizable model.

The plot indicates that as the value of the regularization parameter increases, the cost also
increases. This is because the greater the penalty term, the more the model is discouraged from
relying on any one feature, which makes the model more biased and less likely to overfit the
training data.

On the other hand, if the regularization parameter value is very low, the cost is also very low,
which indicates that the model is overfitting the data. In this case, the model is relying too
heavily on the training data and is not generalizing well to new, unseen data.

learning rate vs Cost

4.44 4 /
4.42 /

Cost
\

4.38 4 »

036 | /

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
reg_param

SUPPORT VECTOR MACHINES

A support vector machine (SVM) is a popular supervised learning algorithm used for
classification and regression analysis. SVMs are used to sort data into one of two categories by
constructing a decision boundary that maximizes the margins between the two categories. In the
case of Soft Margin SVM, the SVM algorithm allows for some data points to be misclassified in
order to achieve a wider margin.

In the case of multi-class classification, the one-vs-all (OVA) approach is often used with SVMs.
The OVA approach involves training multiple binary SVM classifiers, each one trained to
distinguish one class from all the others. During prediction, the class with the highest score from
any of the binary classifiers is selected as the predicted class.

Overall, SVMs are powerful and versatile machine learning algorithms that can be used for a
variety of tasks, such as image classification, natural language processing, and fraud detection.
The choice of SVM variant and approach depends on the specific problem and dataset at hand, as
well as the desired balance between accuracy and complexity.

Steps Involved: -

1) The soft margin support vector machine (SVM) allows some data points to be misclassified
using a hyperparameter C. If the value of C is large, the SVM becomes a hard margin classifier,
which aims to correctly classify all data points. On the other hand, if C is small, the SVM
becomes a soft margin classifier, allowing for some misclassification.

To keep alpha values in a specific range, we can use complementary slackness, which is the
fourth rule of the Karush-Kuhn-Tucker (KKT) conditions for SVM optimization.
By satisfying these conditions, we can ensure that alpha values stay within a specific range, and
the SVM can be used effectively for classification tasks.

al - yf(x)—€ =0

£ - @) =0

® H‘y[f(xi) > 1 then the margin loss is € = 0 and we get a =0
° ll'y[f(x[) < 1 then the margin loss is € > 0 so a = %
e Hai=0Hwn£=OWMdnmmksmH0$ﬁoxf&g>=l

o Ifae (0,~) then & = 0 which implies 1 — yf(x)=0

2) To handle nonlinearity in the data, we utilized the Gaussian radial basis function as a kernel.
This function measures the Gaussian distance between data points in a nonlinear space, which
can be interpreted as a measure of similarity between data points.

—y||2
KX, Y) = exp(— 55

def GRBF(x1, x2):
diff = x1 - x2

return np.exp(-np.dot(diff, diff) * len(xl) / 2)

3) To handle the scenario of multiple classes, we implemented the One-vs-All approach, where
each class is taken as the positive class, labeled as '1', and all other classes are labeled as '-1".

4) Due to longer execution time of support vector machines, we have implemented One-vs-All
approach by sampling the data for each class one at a time. The results of this approach are as
follows:

one_vs_all(X_train UV _pca,y train UV,X test_UV_pca, y_test_UV)

. 96 corrcted out of 100:

NEURAL NETWORKS: -

We explored different strategies for optimizing Neural Networks and prioritizing speed. To
achieve this, we have decided to use mini batches of size 64 to simplify matrix multiplication.
We have provided the training and testing times in table nn1.1. Additionally, we are using
different optimization algorithms such as Adam and RMSprop to converge faster through
gradient descent. RMSprop uses a combination of gradient descent with momentum and
exponentially weighted averages to adjust the learning rate.

Momentum is a technique used in gradient descent optimization to speed up convergence. It
helps the gradient descent algorithm to move faster in the relevant direction and slow down in
irrelevant directions. The momentum term is calculated by taking a weighted average of the
previous gradients.
de: B *de+ (11— B)dw
de= B *de-i- 1 - B)db
W=W —a*V,

b:b—a*de

2) In essence, this approach helps to make the update steps more consistent by using RMSprop to
implement the same smoothing process.

2
3= 0 %8 +(l— Bd

2
Sdbzﬁ *Sdb+(1— B)db

W=W — a*——
de
d

b=b — a*——
Sa

3) According to the original research recommendation, we set the value of to 0.99 and « as the
learning rate as usual. To make the update slower in the vertical direction, we divide the update
of b by a relatively larger number compared to W because the slope is larger in the b direction.

Sometimes, we also add a small value of ¢ in the denominator under the square root to ensure
numerical stability in case the denominator is 0.

4. Adam Optimization (Adaptive moment estimation): Adam performs both momentum and
RMSprop and combines them as follows.

V. =B *V, + (@1~ B)d
Vi =By "Vt (1= B4,
Saw =B, *S5,, + 1 Bz)di
S, =B, *S, +(1— B)d,

In a standard method such like Adam, a bias correction is applied prior to performing a gradient
update.

corrected de
de = ¢
1- B[

corrected _ V(,,,
ib T -g
a 1-B,
corrected _ S‘,u
dw ™ B!
corrected S ib
Sdb - £
1-B,

This algorithm, which combines gradient descent with momentum and gradient descent with
RMSprop, is a commonly used approach for faster convergence in many types of neural
networks. There are several hyperparameters in this algorithm. The most commonly used
parameter values include:

e o = needs to be tuned
e (3 (Moving averages for dw, computes past 10 values averaged) 1 =0. 9
o3 (Moving averages of dw2) 2 = 0. 999

e ¢ = 10 (Usually not required to use)

To accelerate the learning process of algorithms, one effective approach is to implement learning
rate decay. This involves gradually decreasing the learning rate over time as the number of mini-
batches and iterations increase. The reasoning behind this method is that at the start of the
learning process, taking larger steps can be beneficial, but as more iterations are completed, it
becomes more advantageous to slow down the learning process to approach the optimal solution
more accurately.

Here, we have implemented neural networks from scratch using NumPy and optimized various
parameters to achieve the maximum accuracy on the test results. In addition to the above-
mentioned hyperparameters and methods, we also utilized techniques to avoid getting stuck at
the saddle point, which is one of the local optima during the learning process. To prevent this, we
used Adam optimizer, which helps to slip off the saddle point during learning. We also fine-
tuned the decay rate hyperparameter to optimize the learning rate decay, which gradually reduces
the learning rate as the number of mini-batches and iterations increases. Overall, our approach
helped to speed up the learning process and avoid getting stuck at local optima.

RESULTS

1) Logistic Regression Results

e train error: 4.257356647636495
e accuracy: 0.7994613124387855
e testerror: 3.8359508144175183

2) SVM Results
e 96 corrected out of 100:
e Accuracy of SVM on 100 samples = 96%

3)Neural Network Model Comparison
Accuracy on test data for different methods and Train Time

Accuracy using PCA and Train Time
Univariate FS

Adam_using_weight_decay 86.75% 0:00:06.429996
RMSprop_using_L2 86.83% 0:00:07.193343
Base_model_without_optim_and_minibatches | 58.5% 0:09:26.794456

The notation "Adam_using_weight_decay" represents the use of mini-batch gradient descent
with Adam optimization. On the other hand, "RMSprop_using_L2" uses RMSprop as the
optimizer and L2 regularization. However, all the Adam methods mentioned in the context use
the Weight Decay technique, not L2 regularization. The key difference between L2
regularization and weight decay is that L2 regularization changes the gradients to include lambda

times the weight parameters, whereas weight decay doesn't modify the gradients. Instead, it
subtracts the product of learning rate, lambda, and the weight parameters from the weights in the
update step.

Conclusion:

- From the results above, we can conclude that SVM and Neural Networks give us the best
resultsin this classifying task of dry beans into seven different classes.

- For Neural Networks(using RMSprop & Adam), the time taken is least
whilst also providing great results.

- When it comes to SVM, it provided us with the best accuracy i.e., of 96%

	Abstract:
	This study focuses on the classification of a dry beans dataset using three machine learning algorithms: logistic regression, support vector machine (SVM), and neural network (NN). The goal of the project is to evaluate the performance of these algori...
	To achieve this goal, the researchers first preprocessed the data and split it into training and testing sets. They then trained each algorithm on the training set and evaluated their performance using various performance metrics such as accuracy, pre...
	This project has important implications for the field of machine learning, as it demonstrates the effectiveness of different algorithms for classification tasks in complex and diverse datasets. Additionally, it highlights the importance of preprocessi...
	Overall, this project provides valuable insights into the use of machine learning algorithms for classification tasks in real-world applications and can serve as a foundation for future research in this field.
	Introduction:
	Problem Definition:
	Data Resources:
	Data Description:
	Independent Features:
	Dependent Feature:
	Data Understanding & Pre-processing:
	Numerical Features:

	Univariate Analysis: -
	Insights from Univariate Analysis: -
	Multivariate Analysis
	Heat Map(Correlation Analysis)
	Pairplots:-
	Dropping columns with high correlation
	Insights from Multivariate Analysis:

	FEATURE ENGINEERING: -
	Dimensionality Reduction: -
	Principal Component Analysis

	MODEL SELECTION: -
	Model Candidates:
	MultiNominal Logistic Regression:
	Steps Involved:

	SUPPORT VECTOR MACHINES
	Steps Involved: -

	NEURAL NETWORKS: -

	RESULTS
	1) Logistic Regression Results
	2) SVM Results
	3) Neural Network Model Comparison

	Conclusion:

