
Dry Beans Classification
IE 7300 Statistical Learning Final Project

Group 3

Harsha Bhargav Yarramsetty - yarramsetty.h@northeastern.edu

Abhigna Reddy Musku - musku.ab@northeastern.edu

Shamhith Kamasani - kamasani.s@northeastern.edu

Percentage of contribution by Harsha Bhargav Yarramsetty: 33.33%

Percentage of contribution by Abhigna Reddy Musku: 33.33%

Percentage of contribution by Shamhith Kamasani: 33.33%

Signature of Harsha Bhargav: Harsha Bhargav Yarramsetty

Signature of Abhigna Reddy Musku: Abhigna Reddy Musku

Signature of Shamhith Kamasani: Shamhith Kamasani

Submission Date: 04/17/2023

mailto:yarramsetty.h@northeastern.edu
mailto:musku.ab@northeastern.edu
mailto:kamasani.s@northeastern.edu

Abstract:

This study focuses on the classification of a dry beans dataset using three machine learning

algorithms: logistic regression, support vector machine (SVM), and neural network (NN). The

goal of the project is to evaluate the performance of these algorithms on a challenging

classification task in the agricultural industry.

To achieve this goal, the researchers first preprocessed the data and split it into training and testing

sets. They then trained each algorithm on the training set and evaluated their performance using

various performance metrics such as accuracy, precision, and recall. The results showed that SVM

outperformed both logistic regression and NN with an accuracy of 0.976.

This project has important implications for the field of machine learning, as it demonstrates the

effectiveness of different algorithms for classification tasks in complex and diverse datasets.

Additionally, it highlights the importance of preprocessing data and selecting appropriate

performance metrics to accurately evaluate the performance of machine learning models.

Overall, this project provides valuable insights into the use of machine learning algorithms for

classification tasks in real-world applications and can serve as a foundation for future research in

this field.

Introduction:

Dry beans are one of the most widely produced and consumed legume crops in the world, with a

significant impact on global agriculture and food security. However, the quality of dry beans can

vary greatly depending on various factors, such as genetic diversity, growing conditions, and

harvesting methods. This has led to a growing interest in developing effective methods for seed

classification and quality control, which are essential for ensuring sustainable agricultural

systems and providing consumers with high-quality products.

In this project, we aim to explore the use of various machine learning algorithms and techniques

to classify the 7 types of Dry Beans and evaluate their performance.

Problem Definition:

The Dry Beans dataset contains features for seven different types of dry beans, and the goal is to

develop an effective classification model that can accurately identify and classify each type

based on their physical characteristics and properties. The challenge is to find a machine learning

algorithm or technique that can handle the complex and high-dimensional nature of the dataset,

while also achieving high accuracy and robustness in the classification task.

Data Resources:

The data for the analysis is taken from UC Irvine’s Machine Learning Repository.

https://archive-beta.ics.uci.edu/dataset/602/dry+bean+dataset

Data Description:

The dataset contains 16 features, 13,611 instances, and 7 outcome classes of different types of

dry beans. Each record in the Dry Beans dataset represents a single bean zone in an image.

Independent Features:

The features of this dataset are

1) Area (A): The area of a bean zone and the number of pixels within its boundaries.

2) Perimeter (P): Bean circumference is defined as the length of its border.

3) Major axis length (L): The distance between the ends of the longest line that can be drawn

from a bean.

4) Minor axis length (l): The longest line that can be drawn from the bean while standing

perpendicular to the main axis.

5) Aspect ratio (K): Defines the relationship between L and l.

6) Eccentricity (Ec): Eccentricity of the ellipse having the same moments as the region.

7) Convex area (C): Number of pixels in the smallest convex polygon that can contain the area of

a bean seed.

8) Equivalent diameter (Ed): The diameter of a circle having the same area as a bean seed area.

9) Extent (Ex): The ratio of the pixels in the bounding box to the bean area.

10) Solidity (S): Also known as convexity. The ratio of the pixels in the convex shell to those

found in beans.

11) Roundness (R): Calculated with the following formula: (4piA)/(P^2)

12) Compactness (CO): Measures the roundness of an object: Ed/L

13) ShapeFactor1 (SF1)

14) ShapeFactor2 (SF2)

15) ShapeFactor3 (SF3)

16) ShapeFactor4 (SF4)

https://archive-beta.ics.uci.edu/dataset/602/dry%2Bbean%2Bdataset

Dependent Feature:

The dependent variable or target variable in this dataset is the "Class" column, which indicates

the type of the dry bean. There are 7 types of dry beans represented in this dataset, which are:

BARBUNYA, BOMBAY, CALI, DERMASON, HOROZ, SEKER and SIRA.

Data Understanding & Pre-processing:

From analyzing the data, we can see that out of the 16 variables in the dataset, variable - Class is

the dependent target variable we are trying to predict, and it is a categorical variable.
A view of features and target variable, type, unique values and missing values and duplicates:

This view gives us information about non-Null values and the Datatype of values in each feature.

We have three datatypes for values in this dataset: - int, float and object.

The size of the data is 13611X17

We have 13,611 rows and 16 columns in the data set, on which we will perform different data

explorations and visualizations to see the correlations and see how we can impute or fill the null

values.

Data Exploration & Visualization:

1)Finding Null values in the dataset

This dataset has doesn’t have any null values

Numerical Features:

- This table gives info about the count, standard deviation, minimum, maximum and the 4-

percentile cut off values for the 16 numerical features

The graph below gives us information about the counts of each class. Dermason is the most

frequent class with ‘2496’ beans and Bombay is the least frequent class with ‘365’ beans. This

huge difference between the 2 classes, should be considered while building a model, otherwise

there might be a risk of the model being biased.

This view gives us a description of all the variables included is available, along with their

respective mean and median values, which can be used to assess the degree of skewness in the

data. This information can aid in determining the distribution of the data and identifying

potential outliers.

We find that there are 68 duplicate values in this dataset.

After the Data exploration, we perform these two tasks: -

1) Dropping the duplicated rows

2) Setting aside 20% of the data for testing which we will not use in model building

Univariate Analysis: -
Univariate analysis is important in machine learning because it provides a detailed understanding

of individual variables in a dataset, allowing for the identification of trends, patterns, and

anomalies. This information is crucial for selecting appropriate modeling techniques and

developing accurate predictive models.

These boxplots provide important insights into the distribution of each feature, allowing us to

identify any potential outliers, skewness or significant differences in the distributions between

the two groups, which can help guide data cleaning, feature selection and machine learning

modeling decisions.

Insights from Univariate Analysis: -

• Most of the features are left or right skewed and have a lot of outliers (long tail in eccentricity,

solidity, roundness, shape factor2, shape factor4)

• W.r.t area related features (Area, perimeter, convex area, equidistance, major axis), we can

differentiate the 'Bombay' class

• Both Barbunya class and Cali class have similar distributions and values in many features

(area, minor axis length, equivalent diameter, extent, shape factor1), which may lead to

mislabeling one as the other.

• Dermason class is similar to Seker class in some features, and Sira class in other features. It

may be a difficult class to label accurately!

Multivariate Analysis
Multivariate analysis is important in machine learning because it allows us to analyze and model

the relationships between multiple variables simultaneously. By using multivariate analysis, we

identify the important variables and understand how they are related to each other. This

understanding helps us to develop more accurate and effective machine learning models.

Heat Map(Correlation Analysis)

Anova/F Test to see the dependence of features with the target variable

F-test estimates the degree of linear dependency between feature and target variable.

Pairplots:-

Mutual Information Scores
Mutual information between two random variables is a non-negative value, which measures the

dependency between the variables.

It is equal to zero if and only if two random variables are independent, and higher values mean

higher dependency.

Dropping columns with high correlation
After performing, multivariate Analysis, we drop the features with high correlation.In this case

Insights from Multivariate Analysis:
After plotting the correlation plots, we find the following pairs have the highest correlation with

each other:

1. Area & convex area: 1.00

2. Compactness & shape factor 3: 1.00

3. Equivalent diameter & perimeter: 0.99

4. Equivalent diameter & convex area: 0.99

5. Major axis length & perimeter: 0.98

6. Area & perimeter: 0.97

7. Convex area & perimeter: 0.97

8. Major axis length & equivalent diameter: 0.96

9. Minor axis length & equivalent diameter: 0.95

10. Minor axis length & convex area: 0.95

11. Minor axis length & shape factor 1: -0.95

12. Eccentricity & compactness: -0.97

13. eccentricity & shape factor 3: -0.98

14. aspect ratio & shape factor 3: -0.98

15. aspect ratio & compactness: -0.99

• From Mutual Information & F-test, we can see that following variables have least dependency

with respect to the response variable:

1. ShapeFactor4

2. Solidity

3. Extent

Hence, we can conclude that, the above highly correlated features are not useful for our analysis

and can be dropped. Similarly, features that offer very low information to the dependent variable

can also be dropped.
So, we are dropping

1. Perimeter

2. Major Axis Length

3. Minor Axis Length

4. Convex Area

5. Equivalent Diameter

6. ShapeFactor3

7. Compactness

8. Extent

9. Solidity

10. ShapeFactor4

FEATURE ENGINEERING: -

We created 6 new features from the existing features, in order to reduce variance.

They are
1. ShapeFactor5

2. ShapeFactor6

3. ShapeFactor7

4. ShapeFactor8

5. ShapeFactor9

6. ShapeFactor10

We calculate them using the existing features:-

X_new[‘ShapeFactor5’] = X[‘MajorAxisLength’] / X[‘Perimeter’]

X_new[‘ShapeFactor6’] = X[‘MinorAxisLength’] / X[‘Perimeter’]

X_new[‘ShapeFactor7’] = X[‘Eccentricity’] * X[‘Area’]

X_new[‘ShapeFactor8’] = X[‘Eccentricity’] * X[‘Perimeter’]

X_new[‘ShapeFactor9’] = X[‘Extent’] * X[‘Area’]

X_new[‘ShapeFactor10’] = X[‘Extent’] * X[‘Perimeter’]

Checking Correlation for new features: -

After adding new features, we found out there is a huge correlation between the new features,

hence we decided to go eliminate the new ones and proceed with the existing features.

For the outliers to not affect the model performance, we eliminated the outliers found.

Dimensionality Reduction: -
Principal Component Analysis
Principal Component Analysis (PCA) is a method that identifies the components with the highest

variance in a dataset. It achieves this by projecting values onto the eigenvectors of the

corresponding covariance matrices.

The process of finding these eigenvectors involves decomposing the matrix into its eigenvalues

and eigenvectors. If the data set is not a square matrix, it can be decomposed using singular value

decomposition.

To calculate the maximum variance captured by the first n components in singular value

decomposition, we use a formula that involves the sum of the first n eigenvalues and the sum of

all eigenvalues. To perform PCA, we first center the values around their mean. Then, we find the

covariance matrix, eigenvalues, and eigenvectors of the matrix. After sorting the eigenvectors,

we choose the top n eigenvectors and project the data onto them.

The first n components from the singular values decomposition, when calculated

the maximum variance captured from the formula:

n = first n eigenvalues

M = sum of all eigenvalues

These are the steps to perform PCA: -

1. Center the values in the dataset around their mean.

2. Calculate the covariance matrix of the centered dataset.

3. Find the eigenvalues and eigenvectors of the covariance matrix.

4. Sort the eigenvectors in descending order of their corresponding eigenvalues.

5. Choose the top n eigenvectors based on the desired number of principal components to

retain.

6. Project the original data onto the selected eigenvectors to transform it into a new k-

dimensional feature space.

The plot illustrates the relationship between the percentage of variance captured and the number

of components in a dataset. It shows that the first 2-3 components contain a large proportion of

the variance, meaning that they are the most significant features of the dataset. The data

presented in the plot was selected using univariate feature selection methods, which involve

analyzing each feature independently and selecting the ones with the highest predictive power.

Based on this finding, it was decided to move forward with univariate feature selection methods.

A plot of the first principal component (PC1) versus the second principal component (PC2) is

shown in the charts below.

MODEL SELECTION: -

Model Candidates:
The response (dependent) variable we are trying to predict through the dataset is a categorical

variable, hence we will be using classification techniques to predict the class. We have taken the

following machine learning classification models to perform on our dataset:

1. Multi Nominal Logistic Regression: This is a simple and widely used classification

algorithm that is effective for classification problems involving more than two classes

2. Support Vector Machines (SVM): This algorithm uses a hyperplane to separate data into

different classes and tries to maximize the margin between the hyperplane and the closest

data points.

3. Neural Networks: This is a deep learning algorithm that uses layers of interconnected

nodes to learn complex representations of data and make predictions

We will be using the above-mentioned models to perform the classification on the train data and

using the matrices such as precision and recall on the train and validation data, we will be

selectin the best candidate to predict the outcome for our test data.

MultiNominal Logistic Regression:
Multinomial logistic regression is a logistic regression extension that enables multi-class

classification using SoftMax activation. It is used to predict probabilities of belonging to

different classes when there are more than two classes involved.

Steps Involved:

1) In cases where the dependent variable in logistic regression involves more than two classes, a

commonly used technique is to apply the SoftMax function. This approach was also utilized in

our particular scenario where we had to predict among seven different classes.

2) The categorical cross-entropy loss function is a way to measure the difference between the

predicted probabilities and the true probabilities of the classes in a classification problem. It is

commonly used in deep learning for multi-class classification tasks.

In order to calculate the categorical cross-entropy loss for a single example, the function

computes the sum of the negative logarithm of the predicted probability of the true class. This

can be expressed as:

3)In multi-class classification, the labels are typically one-hot encoded, which means that each

class is represented by a binary vector where only one element is 1 (positive class) and the rest

are 0s (negative classes).

When using the categorical cross-entropy loss function for multi-class classification with one-hot

encoded labels, only the term corresponding to the positive class Cp contributes to the loss. This

is because all other terms in the sum of the loss function are multiplied by 0 (since the

corresponding elements in the one-hot encoded target vector are 0s).

Mathematically, we can express this as follows:

4) The plot displays the relationship between the learning rate and the average loss across the

iterations. It shows that as the learning rate increases, the average loss decreases. The learning

rate is a hyperparameter that determines the step size in updating the model parameters during

the training process. A higher learning rate means that the model parameters will be updated

more aggressively, leading to larger changes in the loss function.

5) The plot shows the relationship between the regularization parameter value (L2 penalization)

and the cost. The L2 penalization is a regularization technique used to prevent overfitting by

adding a penalty term to the loss function that discourages the model from relying too heavily on

any one feature. The penalty term is proportional to the square of the weights of the model,

which means that as the regularization parameter value increases, the weight vector is forced to

become smaller, resulting in a simpler and more generalizable model.

The plot indicates that as the value of the regularization parameter increases, the cost also

increases. This is because the greater the penalty term, the more the model is discouraged from

relying on any one feature, which makes the model more biased and less likely to overfit the

training data.

On the other hand, if the regularization parameter value is very low, the cost is also very low,

which indicates that the model is overfitting the data. In this case, the model is relying too

heavily on the training data and is not generalizing well to new, unseen data.

SUPPORT VECTOR MACHINES
A support vector machine (SVM) is a popular supervised learning algorithm used for

classification and regression analysis. SVMs are used to sort data into one of two categories by

constructing a decision boundary that maximizes the margins between the two categories. In the

case of Soft Margin SVM, the SVM algorithm allows for some data points to be misclassified in

order to achieve a wider margin.

In the case of multi-class classification, the one-vs-all (OVA) approach is often used with SVMs.

The OVA approach involves training multiple binary SVM classifiers, each one trained to

distinguish one class from all the others. During prediction, the class with the highest score from

any of the binary classifiers is selected as the predicted class.

Overall, SVMs are powerful and versatile machine learning algorithms that can be used for a

variety of tasks, such as image classification, natural language processing, and fraud detection.

The choice of SVM variant and approach depends on the specific problem and dataset at hand, as

well as the desired balance between accuracy and complexity.

Steps Involved: -

1) The soft margin support vector machine (SVM) allows some data points to be misclassified

using a hyperparameter C. If the value of C is large, the SVM becomes a hard margin classifier,

which aims to correctly classify all data points. On the other hand, if C is small, the SVM

becomes a soft margin classifier, allowing for some misclassification.

To keep alpha values in a specific range, we can use complementary slackness, which is the

fourth rule of the Karush-Kuhn-Tucker (KKT) conditions for SVM optimization.

By satisfying these conditions, we can ensure that alpha values stay within a specific range, and

the SVM can be used effectively for classification tasks.

2) To handle nonlinearity in the data, we utilized the Gaussian radial basis function as a kernel.

This function measures the Gaussian distance between data points in a nonlinear space, which

can be interpreted as a measure of similarity between data points.

3) To handle the scenario of multiple classes, we implemented the One-vs-All approach, where

each class is taken as the positive class, labeled as '1', and all other classes are labeled as '-1'.

4) Due to longer execution time of support vector machines, we have implemented One-vs-All

approach by sampling the data for each class one at a time. The results of this approach are as

follows:

NEURAL NETWORKS: -

We explored different strategies for optimizing Neural Networks and prioritizing speed. To

achieve this, we have decided to use mini batches of size 64 to simplify matrix multiplication.

We have provided the training and testing times in table nn1.1. Additionally, we are using

different optimization algorithms such as Adam and RMSprop to converge faster through

gradient descent. RMSprop uses a combination of gradient descent with momentum and

exponentially weighted averages to adjust the learning rate.

Momentum is a technique used in gradient descent optimization to speed up convergence. It

helps the gradient descent algorithm to move faster in the relevant direction and slow down in

irrelevant directions. The momentum term is calculated by taking a weighted average of the

previous gradients.

2) In essence, this approach helps to make the update steps more consistent by using RMSprop to

implement the same smoothing process.

3) According to the original research recommendation, we set the value of β to 0.99 and α as the

learning rate as usual. To make the update slower in the vertical direction, we divide the update

of b by a relatively larger number compared to W because the slope is larger in the b direction.

Sometimes, we also add a small value of ε in the denominator under the square root to ensure

numerical stability in case the denominator is 0.

4. Adam Optimization (Adaptive moment estimation): Adam performs both momentum and

RMSprop and combines them as follows.

In a standard method such like Adam, a bias correction is applied prior to performing a gradient

update.

This algorithm, which combines gradient descent with momentum and gradient descent with

RMSprop, is a commonly used approach for faster convergence in many types of neural

networks. There are several hyperparameters in this algorithm. The most commonly used

parameter values include:

● α = needs to be tuned

● β (Moving averages for dw, computes past 10 values averaged) 1 = 0. 9

●β (Moving averages of dw2) 2 = 0. 999

● ε = 10 (Usually not required to use)

To accelerate the learning process of algorithms, one effective approach is to implement learning

rate decay. This involves gradually decreasing the learning rate over time as the number of mini-

batches and iterations increase. The reasoning behind this method is that at the start of the

learning process, taking larger steps can be beneficial, but as more iterations are completed, it

becomes more advantageous to slow down the learning process to approach the optimal solution

more accurately.

Here, we have implemented neural networks from scratch using NumPy and optimized various

parameters to achieve the maximum accuracy on the test results. In addition to the above-

mentioned hyperparameters and methods, we also utilized techniques to avoid getting stuck at

the saddle point, which is one of the local optima during the learning process. To prevent this, we

used Adam optimizer, which helps to slip off the saddle point during learning. We also fine-

tuned the decay rate hyperparameter to optimize the learning rate decay, which gradually reduces

the learning rate as the number of mini-batches and iterations increases. Overall, our approach

helped to speed up the learning process and avoid getting stuck at local optima.

RESULTS

1) Logistic Regression Results

• train error: 4.257356647636495

• accuracy: 0.7994613124387855

• test error: 3.8359508144175183

2) SVM Results

• 96 corrected out of 100:

• Accuracy of SVM on 100 samples = 96%

3) Neural Network Model Comparison

Accuracy on test data for different methods and Train Time

 Accuracy using PCA and

Univariate FS

Train Time

Adam_using_weight_decay 86.75% 0:00:06.429996

RMSprop_using_L2 86.83% 0:00:07.193343

Base_model_without_optim_and_minibatches 58.5% 0:09:26.794456

The notation "Adam_using_weight_decay" represents the use of mini-batch gradient descent

with Adam optimization. On the other hand, "RMSprop_using_L2" uses RMSprop as the

optimizer and L2 regularization. However, all the Adam methods mentioned in the context use

the Weight Decay technique, not L2 regularization. The key difference between L2

regularization and weight decay is that L2 regularization changes the gradients to include lambda

times the weight parameters, whereas weight decay doesn't modify the gradients. Instead, it

subtracts the product of learning rate, lambda, and the weight parameters from the weights in the

update step.

Conclusion:

- From the results above, we can conclude that SVM and Neural Networks give us the best

results in this classifying task of dry beans into seven different classes.

- For Neural Networks(using RMSprop & Adam), the time taken is least

whilst also providing great results.

- When it comes to SVM, it provided us with the best accuracy i.e., of 96%

	Abstract:
	This study focuses on the classification of a dry beans dataset using three machine learning algorithms: logistic regression, support vector machine (SVM), and neural network (NN). The goal of the project is to evaluate the performance of these algori...
	To achieve this goal, the researchers first preprocessed the data and split it into training and testing sets. They then trained each algorithm on the training set and evaluated their performance using various performance metrics such as accuracy, pre...
	This project has important implications for the field of machine learning, as it demonstrates the effectiveness of different algorithms for classification tasks in complex and diverse datasets. Additionally, it highlights the importance of preprocessi...
	Overall, this project provides valuable insights into the use of machine learning algorithms for classification tasks in real-world applications and can serve as a foundation for future research in this field.
	Introduction:
	Problem Definition:
	Data Resources:
	Data Description:
	Independent Features:
	Dependent Feature:
	Data Understanding & Pre-processing:
	Numerical Features:

	Univariate Analysis: -
	Insights from Univariate Analysis: -
	Multivariate Analysis
	Heat Map(Correlation Analysis)
	Pairplots:-
	Dropping columns with high correlation
	Insights from Multivariate Analysis:

	FEATURE ENGINEERING: -
	Dimensionality Reduction: -
	Principal Component Analysis

	MODEL SELECTION: -
	Model Candidates:
	MultiNominal Logistic Regression:
	Steps Involved:

	SUPPORT VECTOR MACHINES
	Steps Involved: -

	NEURAL NETWORKS: -

	RESULTS
	1) Logistic Regression Results
	2) SVM Results
	3) Neural Network Model Comparison

	Conclusion:

